Quinary wurtzite Zn-Ga-Ge-N-O solid solutions and their photocatalytic properties under visible light irradiation.
نویسندگان
چکیده
Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.
منابع مشابه
Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.
Visible light photocatalytic H(2) production from water splitting is of great significance for its potential applications in converting solar energy into chemical energy. In this study, a series of Zn(1-x)Cd(x)S solid solutions with a nanoporous structure were successfully synthesized via a facile template-free method at room temperature. The obtained solid solutions were characterized by X-ray...
متن کاملPhotocatalytic Water Splitting for Hydrogen Production with Novel Y2MSbO7 (M = Ga, In, Gd) under Visible Light Irradiation
Novel photocatalysts Y2MSbO7 (M = Ga, In, Gd) were synthesized by the solid state reaction method for the first time. A comparative study on the structural and photocatalytic properties of Y2MSbO7 (M = Ga, In, Gd) was reported. The results showed that Y2GaSbO7, Y2InSbO7 and Y2GdSbO7 crystallized with the pyrochlore-type structure, cubic crystal system, and space group Fd3m. The lattice paramete...
متن کاملMicrowave-assisted rapid synthesis of Co3O4 nanorods from CoC2O4.2H2O nanorods and its application in photocatalytic degradation of methylene blue under visible light irradiation
In this work, Co3O4 nanorods were successfully prepared by microwave-assisted solid state decomposition of rod-like CoC2O4.2H2O precursor within a very short reaction time (6 min) without the use of a solvent/surfactant and complicated equipment. The as-obtained Co3O4 nanorods were fully characterized by X-ray diffract...
متن کاملEnhanced removal of methylene blue dye by bimetallic nano-sized MOF-5s
Metal-organic framework 5 (MOF-5) and bimetallic MOF-5s (Co/Zn and Ni/Zn) were prepared via a simple solvothermal method. Samples were characterized by various techniques such as powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectroscopy (DRS), inductively coupled plasma (ICP) and elemental analysis (EA). Photo...
متن کاملMicrowave-assisted rapid synthesis of Co3O4 nanorods from CoC2O4.2H2O nanorods and its application in photocatalytic degradation of methylene blue under visible light irradiation
In this work, Co3O4 nanorods were successfully prepared by microwave-assisted solid state decomposition of rod-like CoC2O4.2H2O precursor within a very short reaction time (6 min) without the use of a solvent/surfactant and complicated equipment. The as-obtained Co3O4 nanorods were fully characterized by X-ray diffract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016